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Abstract

We present a novel Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue.
Linear solids are represented by the Lagrangian formulation of the stress–strain relationship that is extended to nonlinear
solids by using the Lagrangian evolution of the deformation gradient described in a moving framework. The present
method introduces a level set description, along with the particles, to capture the body deformations and to enforce the
boundary conditions. Furthermore, the accuracy of the method in cases of large deformations is ensured by implementing
a particle remeshing procedure. The method is validated in several benchmark problems, in two and three dimensions and
the results compare well with the results of respective finite elements simulations. In simulations of large solid deformation
under plane strain compression, the finite element solver exhibits spurious structures that are not present in the Lagrangian
particle simulations. The particle simulations are compared with experimental results in an aspiration test of liver tissue.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The simulation of soft tissue is one of the key components of virtual reality systems with applications rang-
ing from video games to virtual surgery environments [48,47]. An important aspect of these simulations is the
physics-based modeling of linear and nonlinear elastic solids undergoing large deformations. A number of
computational techniques have been employed in the past in order to address this problem including finite
element [7,40,31], finite differences [49], mass–spring models [50,51] and particle methods [15,16,33,38,39].
Grid based methods such as finite elements have been shown to be efficient and robust in simulations of sys-
tems undergoing small or medium deformations [7], whereas meshless/particle methods are advocated for the
simulations of solids undergoing excessive deformation and mechanical splitting [38].
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Meshless methods represent material properties on particles and the evolution of the material is linked to
the evolution of the computational elements. They are usually based on a Galerkin or collocation discretiza-
tion of the governing equations and may rely only on particles (as in the case of the Reproducing Kernel Par-
ticle Method (RKPM) [30]) or they may in addition employ a grid for the computation of the stress–strain
relations (Material Point Method (MPM) [45]). The adaptivity and grid-free character of meshless methods
have enabled a number of state of the art simulation in biomechanics [9]. We note however that, even though
meshless methods are considered capable of handling large deformations, they often rely on empirical tech-
niques in order to maintain the accuracy of the method. This problem may be further aggravated when con-
vection terms distort the computational elements, as in simulations of fluid flows, that may be viewed as a
mechanical system undergoing extreme deformations. Smoothed Particle Hydrodynamics (SPH) has been pro-
posed as a meshless method capable of resolving problems with large deformations for both solids and fluids.
In SPH the continuum properties are discretized on smooth particles, the stress–strain governing equations are
formulated in a Lagrangian frame and the derivatives are computed by taking the derivatives of the particle
kernels. SPH allows for a unifying formulation of stress–strain relations and has been used extensively in order
to simulate complex systems ranging from astrophysics [13,32] to impact simulations in solid mechanics [38].
The simulations of solids using SPH suffer from the well-known tensile instability. The problem of tensile
instability arises when the distance of particles is small under positive pressure, an effect attributed to the shape
of the second derivative of the interpolating kernel [46]. The forces become attractive due to the shape of the
derivative approximation resulting in large numerical errors. A number of techniques have been presented to
resolve this problem including the use of an alternative smoothing kernel [24], the introduction of stress points
[39] or artificial stress [33,15]. We consider that this pathology of SPH is related to the fact that smooth par-
ticle approximations are inaccurate when the particle distribution is excessively distorted [2,5]. In fluids prob-
lems convection is often responsible for large particle distortions whereas in solid mechanics particle distortion
is associated with a nonlinear strain field. Several works [38,15,33] have employed particle models for linear
elasticity but the use of particle methods in problems with nonlinear elasticity is relatively limited.

Nonlinear elasticity problems have been simulated in an Eulerian framework using the Finite Element
Method (FEM) [40]. These simulations are based on the formulation of the deformation gradient in terms
of the current material position with respect to its reference position. Similarly, the Reproducing Kernel Par-
ticle Method (RKPM) solve the governing equations of nonlinear elasticity in the framework of the unde-
formed (reference) configuration [6]. The extension of this approach to Lagrangian particle methods is
hindered by the fact that when the material properties are tracked in a moving framework the reference posi-
tion becomes irrelevant. In order to circumvent this difficulty we replace the direct evaluation of the deforma-
tion gradient by its temporal evolution. The resulting formulation enables a straightforward and efficient
implementation using particle methods. To the best of our knowledge, particle models for nonlinear elasticity
have not been presented in the literature. In fluid simulations, the nonlinear relationship between stress tensor
and velocity gradient has been studied recently by the use of non-Newtonian models such as Bingham, Bulk-
ley, and power law models [22,28].

The proposed particle method, relies on remeshing to ensure the accuracy of the simulations in particular
for solids undergoing large deformations. Particles are convected in a Lagrangian framework, followed by a
regularization of their locations and the corresponding projection of the particle properties. This approach
enables accurate simulations of solids undergoing large deformations and eliminates spurious effects such
as the tensile instability. In addition, this remeshing procedure accommodates the generalisation of stress–
strain relations in a Lagrangian framework and the extension of particle methods to problems of nonlinear
elasticity. We also introduce a particle-level set description [19], along with the particles, to capture the solid
bodies and to enforce the boundary conditions.

We compare the present particle methods with the finite element solver (ABAQUS 6.4/EXPLICIT) in benchmark
problems involving linear and nonlinear elastic solids. We examine the accuracy of the method in a three-
dimensional test problem with periodic boundary conditions and demonstrate its capability to simulate large
deformations in a plane strain compression test. Finally, we validate our particle solver by simulating liver
tissue exposed to an aspiration test [35,36].

The paper is structured as follows: in Section 2 we introduce the governing equations for linear and non-
linear elastic material followed by their particle representation in Sections 3 and 4. We validate the particle
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solver in comparison to an analytical solution (Section 5) and in a benchmark problem along with the FEM
solution (Section 6) for both, linear and nonlinear elasticity. In Section 7 we present the simulation of the
mechanical behavior of liver tissue during an aspiration test and compare with experimental data. Moreover,
we consider the simulation problem of a rotating elastic cylinder (Section 8) and of a bouncing ball (Section 9).
The paper concludes with an assessment of the method and outlines future work.

2. Governing equations

We consider the Lagrangian formulation of the governing equations for a linear and a nonlinear model of
an elastic material.

2.1. Linear elastic model

The conservation of mass and momentum are expressed in a Lagrangian framework as
Dq
Dt
¼ �qr � u; ð1Þ

q
Du

Dt
¼ r � r ¼ r � ð�pIþ SÞ; ð2Þ
where q is the density, u the velocity of the material and D
Dt is the material derivative. The stress tensor r can be

split into a pressure �pI and a deviatoric part S. Assuming Hooke’s law the deviatoric part S evolves as fol-
lows [15]:
DSij

Dt
¼ 2l _�ij �

1

3
dij _�kk

� �
þ SijXjk þ XikSkj; ð3Þ

_�ij ¼
1

2

oui

oxj
þ ouj

oxi

� �
; ð4Þ

Xij ¼
1

2

oui

oxj
� ouj

oxi

� �
; ð5Þ
where the Einstein summation is implied ði; j; k ¼ 1; 2; 3Þ; l is the shear modulus, � the strain rate, and X the
rotation rate. The pressure p is determined by an equation of state
p ¼ c2
0ðq� q0Þ; ð6Þ
where c0 is the speed of sound and q0 is the reference density. The speed of sound c0 and the shear modulus l is
obtained from Young’s modulus E and the Poisson ratio m by
c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
3ð1� 2mÞq0

s
; ð7Þ

l ¼ E
2ð1þ mÞ : ð8Þ
2.2. Nonlinear elastic model

We introduce a novel particle model for simulating nonlinear elastic solids. The continuity and momentum
equation have the same form as in the linear case (Eqs. (1) and (2)).

The stress tensor is nonlinear and, without loss of generality, we consider the constitutive law of isotropic
compressible hyperelastic material. The present model is an established nonlinear model of soft biological tis-
sue [12,35,36] originally developed for rubber-like material [20].

The hyperelastic material is characterized by a strain–energy function UðFÞ that is only a function of the
deformation gradient F [20]. The deformation gradient F is defined by
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FðX; tÞ ¼ oxðX; tÞ
oX

; ð9Þ
where x is the current position and X the reference position of the material. When the material resides in
the reference position it is undeformed and stress-free ðx ¼ X) F ¼ IÞ. The deformation gradient is
defined by the Jacobian matrix of the mapping X 7!xðXÞ, with its determinant J ¼ jFj corresponding to
the local volume change with respect to the reference position. Numerical schemes, such as FEM, evaluate
the deformation gradient directly using Eq. (9) in the reference frame. This formulation needs to be
adapted for a Lagrangian framework. Hence, we consider the evolution of the deformation gradient in
the following form:
DF

Dt
¼

D ox
oX

Dt
¼

o Dx
Dt

oX
¼ ou

oX
¼ ou

ox

ox

oX
; ð10Þ

) DF

Dt
¼ F � ou

ox
: ð11Þ
A key aspect of Eq. (11) is that the reference position X is absent and its knowledge is unnecessary during the
evolution. We remark that the right hand side of this equation is similar to the stretching term in the velocity–
vorticity formulation of the 3D Euler equations discretized using vortex particles [29]. It is also similar to the
scalar term appearing in an evolution equation for rate of dilatation in a compressible vortex particle method
[10].

We consider the strain–energy function presented by Nava et al. [35] to characterize soft biological tissue
UðI1; JÞ ¼
XN

n¼1

Cn0ðI1 � 3Þn þ 1

D
ðJ � 1Þ2; ð12Þ
where J ¼ jF j is the volume change and I1 ¼ traceðBÞ is the normalized first strain invariant of the normalized
left Cauchy Green strain tensor BðFÞ, Cn0 denotes the polynomial coefficient and D the volume coefficient. The
normalized left Cauchy Green strain tensor B is expressed by
B ¼ J�
1
3FFT: ð13Þ
The symmetric Cauchy stress tensor used in Eq. (2) is derived from the strain–energy function U [20] as
r ¼ J�1 oU
oF

FT: ð14Þ
Thus, the pressure p and the deviatoric stress S can be evaluated by the following equations:
p ¼ � oU
oJ
¼ � 2

D
ðJ � 1Þ; ð15Þ

S ¼ 2

J
DEV

oU

oI1

B

� �
¼ 2

J
DEV

XN

n¼1

nCn0ðI1 � 3Þn�1
B

" #
; ð16Þ
where DEV½}� represents the deviatoric part of }.

2.3. Initial and boundary conditions

The initial deviatoric part of the stress tensor is defined as Sðx; 0Þ ¼ S0ðxÞ for the linear case and as
Fðx; 0Þ ¼ F0ðxÞ for the deformation gradient in the nonlinear case.

We consider two types of boundary conditions

� Free surface or stress-free boundary. The stress tensor r at the boundary is such that the surface is traction
free
r � n ¼ 0; ð17Þ

where n is the surface normal.
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� Fixed or no-slip boundary. The velocity at the boundary is prescribed in advance, as for example for the
case of a material attached to a wall:
ubody ¼ uwall: ð18Þ
3. Particle representation of solids

3.1. Function and gradient approximations using particles

In the context of particle methods [17,5,27] a smooth approximation of a function UðxÞ can be constructed
by using a mollification kernel f�ðxÞ:
U�ðxÞ ¼ UHf� ¼
Z

UðyÞf�ðx� yÞdy; ð19Þ
where � denotes a characteristic length of the kernel.
The kernel is of order r when the following moment conditions are satisfied:
Z

f�ðxÞdx ¼ 1; ð20ÞZ
xif�ðxÞdx ¼ 0 if jij 6 r � 1; ð21ÞZ
jxjrf�ðxÞdx 61: ð22Þ
This mollified approximation U�ðxÞ can be discretized using the particle locations as quadrature points and a
particle approximation of the regularized function is
Uh
� ðxÞ ¼ Uh

Hf� ¼
XN

p¼1

vpUpf�ðx� xpÞ; ð23Þ
where xp, and vp denote the position and volume of the p-th particle, and Up ¼ UðxpÞ the value at the
p ¼ 1; . . . ;N particle locations.

The error introduced by the quadrature of the mollified approximation of U can be distinguished in two
parts as
U� Uh
� ¼ ðU� UHf�Þ þ ðU� UhÞHf�: ð24Þ
The first term in Eq. (24) denotes the mollification error that can be controlled by appropriately selecting the
kernel properties. The second term denotes the quadrature error due to the approximation of the integral on
the particle locations. Under the assumption of particle overlap, i.e. h ¼ �1þs where s > r=m, the error of the
method is [5]:
kU� Uh
�k0;p 6 Oð�rÞ; ð25Þ
where kð�Þk0;p ¼
R
ð�Þp dx

� �1=p
and r denotes the order of the first non-vanishing moment of the kernel f�. These

error estimates have been confirmed by extensive validation studies in [26] where it was shown that particle
methods with no particle overlap fail to solve accurately the equations that they discretize. The order of
the method is determined by the properties of the kernel and for positive kernels (such as the Gaussian),
r ¼ 2. In this work we have implemented for f� a quartic spline kernel with second order of accuracy [27]
is implemented:
f�ðxÞ ¼ nd
�f� ¼ nd

s4

4
� 5s2

8
þ 115

192
; 0 6 s < 1

2
; s ¼ jxj

�
;

� s4

6
þ 5s3

6
� 5s2

4
þ 5s

24
þ 55

96
; 1

2
6 s < 3

2
;

ð2:5�sÞ4
24

; 3
2
6 s < 5

2
;

0; s P 5
2
:

8>>>>><>>>>>:
ð26Þ
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The normalization value nd depends on the dimension of the problem and is computed as
nd ¼
1P

jvj
�f�ðx� xjÞ

ð27Þ
ensuring the property of partition of unity for the particles. Kernels of arbitrary order [1] are possible by giving
up the positivity of the kernel function.

The error estimates reveal a very important fact for smooth particle approximations: in order to obtain
accurate approximations of the smooth particles must overlap. Note that the moment conditions expressed
by the integrals of the mollifier functions are not often well represented in the case of discrete particle sets.
These moment conditions can be ensured by appropriate normalizations [5].
3.2. Remeshing

A key aspect of the present method involves the use of a remeshing procedure. In smooth particle methods,
as discussed earlier, particles must overlap at all times in order to guarantee the convergence of the method.
We remark that Cottet [4] has shown that remeshing is equivalent to a regularisation of the particle
description.

In this work remeshing is employed in order to regularize the distorted particle locations and to redistribute
accordingly particle quantities onto a uniform set of particles with the spacing h. The redistribution of particle
quantities is achieved using the 3rd order M 04 kernel [26] which in one dimension it is expressed as
M 0
4ðx; hÞ ¼

1� 5s2

2
þ 3s3

2
; 0 6 s < 1; s ¼ jxjh ;

ð1�sÞð2�sÞ2
2

; 1 6 s < 2;

0; s P 2:

8>>>><>>>>: ð28Þ
In higher dimensions the interpolation formulas are tensorial products of their one-dimensional counterparts.
The remeshing procedure is used in order to redistribute the mass, the momentum, the product of stress ten-
sor, the particle volume, the product of the deformation tensor and the particle volume.
3.3. Particle derivative approximations

Particle approximations of derivative operators can be constructed through their integral approximations.
This can be easily achieved by taking the derivatives of Eq. (19) as convolution and derivative operators com-
mute in unbounded or periodic domains. This approximation is employed in Smoothed Particle Hydrodynam-
ics (SPH) [32,34] where derivatives of a field quantity U on a particle p are approximated in a conservative
form as
o

oxi
U

	 

p

¼
X

q

vqðUq � UpÞ
o

oxi
f�ðxp � xqÞ; ð29Þ

o

oxixj
U

	 

p

¼
X

q

vqðUq � UpÞ
o

oxixj
f�ðxp � xqÞ; ð30Þ
where vq is the volume of particle q. The normalization values nd;1; nd;2 of o
oxi

f�ðxÞ ¼ nd;1
o

oxi

�f�ðxÞ and
o

oxixj
f�ðxÞ ¼ nd;2

o
oxixj

�f�ðxÞ are chosen such that the corresponding non-zero moment condition [11] is satisfied.

The kernel of Eq. (26) has its first three derivatives continuous, allowing a smooth approximation of the
spatial derivatives of UðxÞ. An alternative formulation involves the development of integral operators that
are equivalent to differential operators [11], first introduced for the approximation of the Laplacian [8].
Comparisons between the two approximations in the context of SPH are the subject of ongoing
investigations.
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4. Particle equations

The particle position xp, mass mp, volume vp, and velocity up evolve by the following system of ordinary
differential equations:
dxp

dt
¼ up;

dmp

dt
¼ 0;

dvp

dt
¼ hr � uipvp; ð31Þ

dup

dt
¼ vp

mp
ð�hrpip þ hr � SipÞ;
where hr}ip represents the mollified derivative approximation of } based on Eqs. (29) and (30). The evalu-
ation of the pressure p and the deviatoric stress S depends on the constitutive model of the elastic material.

The surface of the elastic body is described using the Particle Level Set Method [18,19].
The Level Set method [37,43] defines an interface CðtÞ as the zero level set of a high dimensional, scalar

function Uðx; tÞ : R3 ! R:
CðtÞ ¼ fx 2 X : Uðx; tÞ ¼ 0g; ð32Þ
where X is the computational domain.
The motion of the interface is driven by the velocity field uðx; tÞ as
oU
ot
þ u � rU ¼ 0 for t > 0; ð33Þ

Uðx; 0Þ ¼ U0ðxÞ: ð34Þ
The function U0 is usually chosen as the signed distance to the interface such that jrUj ¼ 1. This enables an
accurate and fast evaluation of the surface normal n ¼ rU

jrUj.
Alternatively the level set equation can be expressed in a Lagrangian framework using the material deriv-

ative D
Dt ¼ o

ot þ u � r as
DU
Dt
¼ 0; ð35Þ

dx

dt
¼ u;
where x denotes the characteristics of the equation. This evolution can be solved naturally using Lagrangian
particle methods where the particles carry the level set information as a scalar attribute Up that remains con-
stant during the time integration:
dUp

dt
¼ 0: ð36Þ
We reinitialize the level set value every 20th time step to ensure the signed distance property. The method is
implemented using the Parallel Particle-Mesh (PPM) Library [42] enabling large-scale particle simulations on
massively parallel computer architectures.

4.1. Linear elastic model

The pressure pp and the evolution of the deviatoric stress Sp on particle p for the linear elastic solid is
expressed by
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pp ¼ c2
0

mp

vp
� q0

� �
;

dSij;p

dt
¼ 2l _�ij;p �

1

3
dij _�ij;p

� �
þ Sij;pXjk;p þ Xik;pSkj;p;

_�ij;p ¼
1

2

oui

oxj

	 

p

þ ouj

oxi

	 

p

 !
; ð37Þ

Xij;p ¼
1

2

oui

oxj

	 

p

� ouj

oxi

	 

p

 !
;

where _�p is the strain rate and Xp the rotation rate of particle p.

4.2. Hyperelastic model

The deformation gradient Fp on particle p evolves by
dFp

dt
¼ ou

ox

	 

p

Fp: ð38Þ
The volume change J p, the normalized left Cauchy Green strain tensor Bp, the normalized first invariant I1;p of
a particle p are evaluated by
J p ¼ jFpj;

Bp ¼ J
�1

3
p FpFT

p ;

I1;p ¼ traceðBpÞ:
Finally, the pressure pp and the deviatoric stress Sp can be expressed by
pp ¼ �
2

D
ðJ p � 1Þ;

Sp ¼
2

J p
DEV

XN

n¼1

nCn0ðI1;p � 3Þn�1
Bp

" #
: ð39Þ
The terms are based on the constitutive model of a hyperelastic material in reduced polynomial form (Eqs. (15)
and (16)).

4.3. Implementation of boundary conditions

The boundary conditions are enforced in the present work through an implicit representation of the surface
using particle-level sets [19]. A narrow band of particles around the boundary is used in order to enforce the
signed distance function property of level sets. Hence, in addition to the particles in the interior of the body,
ghost particles surround the elastic material in order to carry the level set information. In the present method
we use these ghost particles, not only to describe the boundary surface, but in addition in order to enforce the
local boundary condition. This is achieved by appropriately adjusting the physical attributes of the ghost par-
ticles, such as mass, volume, velocity, as well as the deviatoric stress tensor for the linear elasticity model and
the deformation gradient for the nonlinear model.

In this context the free surface boundary condition (Eq. (17)) is enforced by moving the ghost particles with
an appropriate velocity field. In the present work the velocity field of each ghost particle is chosen as the aver-
aged velocity of the particles in the interior of the solid body which are within their kernel support. In turn the
pressure corresponds to the ambient pressure and the deviatoric stress is adjusted to satisfy (Eq. (17)) as pre-
sented by Randles and Libersky [39]. At a fixed boundary, mass, volume, pressure, deviatoric stress of the
ghost particles are approximated by an average over the solid particles within their support and their velocity
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is prescribed as that of the boundary. The ghost particles are also remeshed during the remeshing procedure
and the moments of the physical properties of the particles are conserved within the narrow band that entails
the boundary. We note that the use of the ghost particles allows that regular meshes can be used for the reme-
shing procedure, it facilitates the evaluation of the particle equations and there is no need for one sided inter-
polation kernels [44] that are restricted to simplified geometries. At the same time we remark that the
remeshing procedure and the associated modification of the ghost particle attributes do not guarantee the
algebraic conservation of the material properties of the body. For simple body motions such as translation,
mass and momentum conservation is conserved as the ghost particles are also been remeshed but for more
complex boundary motions this is not the case. The results of the benchmarks simulations however demon-
strate that this non-conservative approach still allows for robust and accurate simulations.

5. Accuracy

We consider an elastic unit cube with periodic boundary conditions in all directions. A sinusoidal velocity
ðuðx; 0Þ ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞÞ is initially imposed that leads to periodic oscillations in the material.
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Fig. 1. L1-error of the particle solution (dashed line) and the FEM solution (dash-dotted line) in linear (left) and nonlinear (right) case
compared to 2nd order scaling (solid line).
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Fig. 2. Plane strain compression test. Elastic material in rectangular shape is compressed by two imaginary pistons moving with a constant
velocity upiston.
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We quantify the accuracy of the particle method by the maximum error ðL1Þ of the velocity profile as com-
pared with the analytic solution after one period. Young’s modulus is E ¼ 100 and the Poisson ratio is set
to m ¼ 0:3 in the linear case. The polynomial coefficient is C10 ¼ 10 and the volume coefficient D ¼ 1 in the
nonlinear case. The Finite Element simulation are performed with ABAQUS 6.4/EXPLICIT using an explicit time
integration.

Fig. 1 shows the L1-error over the inverse of the particle distance h. The particle solution converges with
second order in the L1 – error in both the linear and nonlinear case. The errors are comparable with the FEM
solution for the same number of computational elements.
Fig. 3. Plane strain compression test with linear elasticity. The finite element solution (left) is compared to the particle solution (right) at
t ¼ 0:0; 0:02; 0:025; 0:03 using the same initial resolution (� 2000 computational elements). The color represents the pressure distribution.
(For interpretation to colours in this figure, the reader is referred to the web version of this paper.)
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6. Plane strain compression test

We compare the results of plane strain compression test with an FEM solution provided by ABAQUS 6.4/

EXPLICIT for linear and nonlinear elasticity. The elastic material is initially undeformed and has a rectangular
shape of size 1� 2 (Fig. 2). The horizontal faces move with a constant vertical velocity upiston ¼ 25 whereas the
vertical faces are considered as free surfaces. The vertical compression of the material leads to a horizontal
expansion. The thickness of the piston is neglected. The simulations indicate a singularity at the corners of
the elastic material where the material is forced to rotate for approximately 90�.

The simulations are performed with an initial density that is equal to the reference density q0 ¼ 1. We per-
form an explicit time integration using a 4th order Runge–Kutta with a constant time step of Dt ¼ 5� 10�5. A
CFL-condition involving the speed of sound limits the time step where the speed of sound is c ¼ c0 (defined in
Eq. (7)) for the linear elastic solid and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðDqÞ

p
for the hyperelastic solid (Eq. (39)).

6.1. Linear elastic model

The elastic material has Young’s modulus of E ¼ 100 and a Poisson ratio of m ¼ 0:49. This value of Poisson
ratio results in to a behavior of a nearly incompressible solid.

Fig. 3 shows the evolution of the elastic material based on the presented particle solver compared to an
FEM solution. The two solutions mainly differ in their behavior near the numerical singularity at the corner
of the piston. The FEM solver reveals significant artifacts near the singularity with nodes crossing the ambient
piston resulting in nonphysical structures in the vicinity of the singularity whereas the results of the particle
solution remain physically plausible. Refinement of the FEM grid cannot resolve this problem as shown in
Fig. 4. Plane strain compression test with linear elasticity. Effect of the resolution on the particle solution at t ¼ 0:03 using � 800;� 2000
and � 8000 nodes/particles. The color represents the pressure distribution. (For interpretation to colours in this figure, the reader is
referred to the web version of this paper.)



Table 1
Maximum horizontal displacement of the linear case at t ¼ 0:02

Particles/nodes ðt ¼ 0Þ Particle method Order of particle method FEM

512 0.138 – 0.230
2028 0.192 1.2 0.232
8192 0.228 2.6 0.232

32,768 0.233 1.8 Abort
131,072 0.235 – Abort

The order of the particle method is estimated using Richardson extrapolation [41].
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Fig. 4. In fact a refinement to a grid containing 8000 cells leads to an abort of the simulation at t ¼ 0:0263 as
the deformation speed becomes larger than the wave speed at nodes in the vicinity of the corner.

The results listed in Table 1 illustrate the effect of the resolution on the maximum horizontal displacement
for both methods. The maximum horizontal displacement resides on the surface of the elastic solid. The par-
ticle solution converges more than linearly and agrees well with the FEM results. The FEM solution is nearly
converged at a low resolution whereas the particle method requires a high resolution to reach convergence.
This result might be explained by the diffusive effect of the remeshing and the level set reinitialization. Partic-
ularly, the first-order reinitialization scheme of the level set function can shift the surface significantly as
shown by [19].

6.2. Hyperelastic model

The particle method is validated for a hyperelastic solid with a strain–energy relationship defined by an
expansion series (Eq. (12)) with N ¼ 1 and C10 ¼ 2:2 and D ¼ 0:001.
Fig. 5. Plane Strain Compression test with nonlinear elasticity. Effect of the resolution on the particle solution at t ¼ 0:025 using
� 500;� 2000 and � 8000 nodes/particles. The color represents the pressure distribution. (For interpretation to colours in this figure, the
reader is referred to the web version of this paper.)



Table 2
Maximal horizontal displacement of the nonlinear case at t ¼ 0:02

Particles/nodes ðt ¼ 0Þ Particle method Order of particle method FEM

512 0.143 – 0.249
2028 0.200 1.0 0.250
8192 0.237 1.6 0.250

32,768 0.250 2.0 –
131,072 0.254 – –

The order of the particle solution is estimated using Richardson extrapolation [41].
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Fig. 5 shows the simulation results of the FEM and the particle solver at t ¼ 0:025. The FEM solution
remains stable for all resolutions. We observe however severe numerical artifacts in the vicinity of the singu-
larity, even at a high resolution. The large rotation and compression of the material near the singularity causes
large errors in FEM solution as the stresses are evaluated in the undeformed reference frame and mapped to
the deformed Lagrangian frame. The Lagrangian particle method readily handles rotations as the computa-
tional elements follow the deformation of the material.

Table 2 shows the effect of the resolution on maximal horizontal displacement of both methods. The FEM
solution and the particle solution converge to a displacement with a deviation of 2%. Similarly to the linear
case (Table 1), the FEM solver reaches a converged solution at a lower resolution than the particle solver.
Again, we see the origin of this discrepancy in the remeshing of the particles and reinitialization of the level
set function.

7. Simulation of aspiration test on liver tissue

The particle method is applied to the simulation of the deformation of liver tissue during an aspiration test
[35,36]. The aspiration test is performed by pressing a tube against the liver tissue, creating a vacuum so that
the tissue is sucked into the aspiration cavity (Figs. 6 and 7). The material properties of the tissue are deter-
mined by measuring the tissue height inside the tube.

We adopt the hyperelastic liver model of Nava et al. [35] that describes the strain–energy relationship in the
reduced polynomial form of order N ¼ 5 (Eq. (12)), where the polynomial coefficients are
C10 ¼ 2:23;C20 ¼ 7:02;C30 ¼ 5:03;C40 ¼ 6:19;C50 ¼ 7:50. The viscoelasticity of the tissue is modeled by time
dependent relaxation coefficients in form of a Prony series of order K ¼ 4.
Fig. 6. Aspiration test. The test device (left) and a schematic description (right) of the aspiration test (in courtesy of [36]).



Fig. 7. Aspiration test. Typical image showing the exposed tissue bubble during the aspiration test (in courtesy of [36]).
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We simplify the viscosity model by considering only bulk viscosity and restricting the Prony series to first
order. The volume coefficient determines the compressibility of the material and is set to a small value
ðD ¼ 5� 10�8 1=PaÞ in order to mimic incompressible behavior. We solve the viscosity model by integrating
an additional ODE following the methodology of particle methods. The derivation of the ODE of first order
from Eq. (15) is shown in the Appendix A.

The size of the domain is (3 cm � 3 cm � 3 cm) containing approximately 100,000 particles. The tissue cov-
ers the domain up to a height of 2.5 cm. The aspiration hole with a diameter of 1 cm is placed at the center of
the top face. The time integrator is an explicit Runge–Kutta scheme of 4th order with a time step of 0.0005. A
no-slip boundary conditions is imposed to the lateral faces of the tissue and the area surrounding the aspira-
tion hole. The pressure inside the aspiration tube ptube ¼ p1ð1� e�2t=sÞ decreases with time approaching a limit
of p1 ¼ �300 mbar.

Fig. 8 shows a representative cross section of the domain through the center of the bubble at time t ¼ 15. It
is colored according to the dilatation d ¼ DV =V 0. We note that the non-zero dilation is concentrated in the
vicinity of the aspiration hole indicating that the domain size is sufficiently large. The dilation is positive where
tissue is sucked into the tube and negative where the tissue is pressed against the aspiration device.
Fig. 8. Aspiration test. Dilatation ðDV =V 0Þ in the bubble cross section at t ¼ 15 with isolines at �1%;�2%;�3%;�4%.
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Fig. 9. Aspiration test. Time history of the displacement of the bubble tip in the particle simulation (solid line) compared to the
experimental measurement (dashed line) [36].
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The time history of the bubble displacement is shown in Fig. 9. The bubble displacement is monitored on
the tip of the bubble in both the simulation and the experiment. The comparison shows a good agreement
between the particle solution and the experimental results.

8. Simulation of a rotating elastic cylinder

The simulation of a rotating elastic cylinder allows for an assessment of the conservation of angular
momentum in SPH, an issue that has been thoroughly addressed in a work of Hoover et al. [21]. In the present
work the linear elastic cylinder of radius r0 ¼ 1 is initially undeformed and rotates around its symmetry axis
with the angular speed x ¼ 2p. The material of the cylinder has Young’s modulus of E ¼ 100 and Poisson
ratio of m ¼ 0:3. The time integration involves the Runge–Kutta scheme of 4th order wit the time step
Dt ¼ 0:001. The particles are remeshed in every time step and level sets are reinitialized every 20th time step.

The geometry of the cylinder is reduced to a two-dimensional circle to simplify the setup. The cylinder
(Fig. 10) expands and compresses in the radial direction during its time evolution. The frequency of the radial
oscillation is approximately four times larger than the rotation frequency.

In the present paper we have used as a basis of the SPH methodology, the original equations proposed by
Gingold and Monaghan [13] which is known not to conserve angular momentum [34]. We note however that
by employing the modified SPH equations proposed by Monaghan [34] we did not observe any significant
improvement in the present simulations. We have also implemented the corrected method proposed by Gin-
gold and Monaghan [14] to conserve angular momentum in simulations of compressible non-dissipative vis-
cous fluids. This method does work for compressible fluids but when applying it to elastic solids we found that
the velocity field became highly noisy.

Fig. 11 shows the cylinder shape at t ¼ 0:5 with respect to the particle resolutions. We note that the cylinder
rotation does not affect drastically the shape of the cylinder, a numerical artifact that has been observed before
in SPH simulations of the same problem [21]. We attribute this property to the remeshing that ensures the
regularity of the particle locations and thus the good reconstruction of the cylinder. In Fig. 12 we show the
normalized error of the angular momentum as a function of time for different resolutions. We observe that
increasing the resolution does not affect the conservation of angular momentum. In turn, in Fig. 13 we show
the normalized error of the angular momentum as a function of time for different remeshing frequencies and
different treatments of the boundary. We note that remeshing helps to drastically improve the conservation of
angular momentum as compared to the unremeshed SPH simulations. Furthermore short time simulations
indicate that the boundary treatment is crucial in conserving angular momentum in simulations of solid
bodies. In this context we considered two different way of assigning the velocity of the ghost particles. First
we extrapolate the velocity over the boundary based on a linear regression of the solid particle velocities Sec-
ondly, we estimate the ghost particle velocity by assuming a rigid body rotation with a constant angular speed.
The latter treatment leads to a much better conservation of angular momentum, especially in a long term sim-
ulation. These results indicate that the treatment of the boundary is crucial, along with remeshing in ensuring
the conservation of angular momentum in SPH simulations. We note however that the presently proposed



Fig. 11. Crosssection of the rotating cylinder at t ¼ 0:5 colored by the pressure using � 800; 3200 and 12,800 particles.

Fig. 10. Snapshots of the rotation cylinder colored by the pressure at time ti ¼ 0:05k (k ¼ 0; 1; . . . ; 11, from left to right, from top to
bottom) using � 3200 particles.
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techniques need to be improved. We are currently investigating various assignment of ghost particle properties
in order to enforce boundary conditions while conserving the angular momentum of the system. These obser-
vations lead us to conclude that the remeshing scheme is, at least, not detrimental to the conservation of angu-
lar momentum.

We are not aware of an SPH methodology that conserves angular momentum in elastic solids. Future work
could focus on comparative studies of the effects of the present methodology with recent approaches intro-
duced for conservation of angular momentum, such as those by Hu and Adams [23] for the viscous, compress-
ible fluids and by Khayyer et al. [25] for incompressible fluids.



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Time t

N
or

m
al

iz
ed

 A
ng

ul
ar

 M
om

en
tu

m

10
1

10
2

10
−1

10
0

1/Particle Spacing

E
rr

or
 A

ng
ul

ar
 M

om
en

tu
m

Fig. 12. Time history of the angular momentum for � 800; 3200 and 12800 particles (left: dashed, dash-dotted and solid line, respectively)
and the effect of the resolution on the error at t ¼ 0:5.
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9. Simulation of a bouncing ball

A linear elastic spherical ball of radius r ¼ 0:28 hits a fixed wall at t ¼ 0. The ball has an initial velocity of
u0ðxÞ ¼ 1 and Young’s modulus E ¼ 100 and Poisson ratio m ¼ 0:4. The time integration scheme is the Runge–
Kutta scheme of 4th order with a time step Dt ¼ 1� 10�4.

The particles are remeshed every 10th time step, and the level sets are reinitialized every 500 time steps.
Fig. 14 shows the deformation of the ball discretized by 8000 particles at t ¼ 0:00; 0:03; 0:07; 0:14; 0:21 and
0.25, while Fig. 15 exhibits the wall pressure during the collision.

The collisions between the ball and the wall are detected based on the level set description of the ball.
The layer of ghost particles surrounding the ball carry the distance information to the surface of the ball
in terms of the level set value Upg. When the distance of a ghost particle to the wall dwall is greater than
its distance to the ball surface Upg collision is detected. The ghost particles indicating collision enforce a zero
velocity at the wall. As the wall can only push the ball, the pressure at the wall has to be nonnegative. When
negative pressure appears at the wall during the computation, the corresponding ghost particles enforce a
free surface boundary condition and the ball separates from the wall. This collision detection algorithm
can easily be generalized for two complex geometries described by separate level set representations
ðU1ðxÞ;U2ðxÞÞ. Hereby, collision can be detected by the spatial comparison of the distance information
to the surface ðU1ðxÞ;U2ðxÞÞ.
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Fig. 13. Time history of the angular momentum for the remeshing frequency of every and every 10th step as well as without remeshing
(left: dashed, dash-dotted and solid line, respectively) and for different boundary treatments when remeshed every time step (right). We
compare the assignment of ghost velocities by averaging (dashed line) and linear extrapolation (dash-dotted line) and under the
assumption of constant rigid body rotation (solid line and top dashed line on the left).



Fig. 15. Simulation of a bouncing ball using 8000 particles. The snapshots show the ball surface colored by the speed (left) and the wall
pressure with isolines at p ¼ 2; 4; 6; 8 (right) during the collision at t ¼ 0:03; 0:07 and 0.14 (from top to bottom).

Fig. 14. Simulation of a bouncing ball using 8000 particles. The snapshots show the ball surface colored by the magnitude of its velocity at
t ¼ 0:00; 0:03; 0:07; 0:14; 0:21 and 0.25 (from left to right, from top to bottom).
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10. Conclusions

In this paper we present a novel particle method for the simulation of linear and nonlinear elastic solid
models. The particle method relies on a remeshing procedure to ensure convergence and to avoid numerical
artifacts such as tensile instabilities that are often associated with SPH formulations.

The formulation enables simulations of linear and nonlinear elastic materials. In the latter case we intro-
duce, to the best of our knowledge, the first ever Lagrangian particle simulations of nonlinear elastic solids.
Furthermore a particle-level set technique is used along with the particles for the implicit representation of the
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body and the method is validated by comparisons with experimental results and with finite element
simulations on benchmark problems. For linear solids the particle method has a similar accuracy as the finite
element method. In the plane strain compression test, the finite element solution reveals severe numerical arti-
facts where the material is forced to rotate for 90�. In this problem the particle solution remains plausible as
the Lagrangian formulation of the particle method is well suited to problems with large deformations. The
method is applied to simulations of realistic nonlinear soft tissue and it is validated against experimental
results in an aspiration test.

We wish to emphasize that remeshing helps to ensure the overall accuracy of the SPH methodology and
assists in the conservation of the angular momentum in SPH simulations of solids. Our results identify the
treatment of the boundary conditions as a critical issue in conserving angular momentum in SPH simulations
of finite solids. In the present method we employ particle-level sets and of ghost particles to improve the accu-
racy of the method, but this topic requires further investigation.

A related note concerns the effect of remeshing in the case of simulations of materials with diverse material
properties. The use of implicit surface descriptions, along with ghost particles, can be used for each material
component, so that remeshing does not mix the different material properties. A simple example of this situa-
tion is shown in the case of the bouncing ball experiment. Simulations of systems involving multiple materials
can be developed by using a distinct particle-level set descriptions of each material along with ghost particles in
order to specify their boundaries. In situations where the materials remain distinct during the simulation,
remeshing will not result in mixing the material properties. Hence the method can be applied to problems
involving multiple materials along with suitable collision detection algorithms. This method however cannot
handle simulations involving destructed materials as in cases pertaining to tissue cutting in virtual surgery. We
are currently investigating the coupling of the Lagrangian particle method with immersed interface techniques,
along with collision detection algorithms, for simulations in virtual surgery environments.
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Appendix A. Bulk viscosity

The bulk viscosity describes the viscosity effects with respect to volume change of a material and is associ-
ated with the material pressure. The evaluation of the pressure involves a time convolution with the time var-
iant relaxation modulus Y ðtÞ [3]
pðtÞ ¼ Y ð0ÞeJ ðtÞ þ Z t

0

_Y ðtÞeJ ðt � sÞds; ðA:1Þ
where eJ ðtÞ ¼ ðJðtÞ � 1Þ. The direct numerical evaluation of the convolution in time is computationally expen-
sive and memory-consuming as it requires the storage of volume change history JðtÞ. In present study, the
relaxation modulus Y(t) is described by a Prony Series of order K [35,36]
Y ðtÞ ¼ Y1

1�
PK

k¼1�gP
k|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Y

1�
XK

k¼1

�gP
k ð1� e�

t
sk Þ

 !
; ðA:2Þ
where Y1 is the long term elastic modulus, sk are the characteristic times, and �gP
k are the Prony coefficients.

Transforming Eq. (A.1) into Laplace space yields in consideration of Eq. (A.2):
pðsÞ ¼ sY ðsÞ � eJ ðsÞ ¼ sY
1

s
�
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where
�p0ðsÞ ¼ Y eJ ðsÞ; ðA:4Þ

�pkðsÞ ¼ �
�gP

k

1þ sks
Y eJ ðsÞ; k ¼ 1; . . . ;K: ðA:5Þ
Eq. (A.5) is equivalent to a set of ODE in real space when it is rewritten as
�pkðsÞ þ sks�pkðsÞ ¼ ��gP
k Y eJ ðsÞ; k ¼ 1; . . . ;K: ðA:6Þ
Finally, we obtain the pressure pðtÞ in real space as composition of K þ 1 terms �pkðtÞ where K terms are gov-
erned by ODEs of first order
pðtÞ ¼
XK

k¼0

�pkðtÞ; ðA:7Þ

�p0ðtÞ ¼ Y eJ ðtÞ
¼ Y1

1�
PK

k¼1�gP
k

ðJðtÞ � 1Þ; ðA:8Þ

�pkðtÞ þ sk _�pkðtÞ ¼ ��gP
k Y eJ ðtÞ ¼ ��gP

k

Y1

1�
PK

k¼1�gP
k

ðJðtÞ � 1Þ; k ¼ 1; . . . ;K: ðA:9Þ
The set of Eqs. (A.7)–(A.9) replaces evaluation of Eq. (A.1). Since the order K of the Prony Series is low in an
average application, the computational effort to solve Eqs. (A.7)–(A.9) is much smaller than solving the time
convolution of Eq. (A.1).
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